Liquid Densities at Elevated Pressures of *n*-Alkanes from C₅ to C₁₆: A Critical Evaluation of Experimental Data

Ivan Cibulka* and Lubomír Hnědkovský

Department of Physical Chemistry, Institute of Chemical Technology, 166 28 Prague, Czech Republic

The published experimental data for *n*-alkanes are critically reviewed and the parameters of the Tait equation are given. This equation allows the calculation of smoothed values of liquid density of *n*-alkanes from pentane to hexadecane over a temperature and pressure range.

Introduction

The work, the results of which are summarized here, is a continuation of the critical evaluation of published $-\rho - T$ data in a liquid state for two groups of substances, 1-alkanols and *n*-alkanes. The critical evaluation of the published density data obtained at atmospheric pressure or along a saturation curve for 1-alkanols and *n*-alkanes was performed and published [93-cib] as a part of the IUPAC Project on Vapor-Liquid Equilibria in 1-Alkanol +

-Alkane Mixtures [94-dym] followed by the paper on densities of 1-alkanols at elevated pressures [94-cib/zik]. In this paper published densities for liquid *n*-alkanes from pentane to hexadecane at pressures higher than either 0.1 MPa or the saturation pressure are reviewed and critically evaluated.

Sources of Data

The original experimental data (8484 data points) processed were extracted from a source database developed and installed under the FOXPRO 2.5 environment in the laboratory of the authors. The database contains published experimental data for several properties of pure liquids (density, volume, compression, compressibilities, expansivities, compressibility factor, speed of sound) as a function of temperature and pressure along with a large amount of auxiliary information compiled from the literature.

The characteristics of data that were available in the database for density and related quantities (molar and specific volumes, volume or density ratios, compression) of

-alkanes are summarized in Table 1. The displayed temperature ranges and numbers of experimental values are restricted up to the critical temperature (for the critical temperatures selected see [93-cib]); i.e., only subcritical liquid density data were taken from the source database.

Treatment of Data and Method of Data Evaluation

The procedures of treatment of data and the critical evaluation were essentially the same as those employed for 1-alkanols, and the details may be found in our previous paper [94-cib/zik]. Therefore a brief summarization only is given below.

Available experimental data on the compressed liquid density of alkanes were fitted by a Tait equation with temperature dependent parameters C(T) and B(T) written in the form

$$\rho(T, P, \vec{c}, \vec{b}) = \frac{\rho(T, P_{\text{ref}}(T))}{1 - C(T, \vec{c}) \ln\left[\frac{B(T, \vec{b}) + P}{B(T, \vec{b}) + P_{\text{ref}}(T)}\right]}$$
(1)

* Fax: +42-2-2431-0273. E-mail: ivan.cibulka@vscht.cz.

S0021-9568(96)00058-1 CCC: \$12.00 © 19

where

$$C(T, \vec{c}) = \sum_{i=0}^{N_{\rm C}} c_i [(T - T_0)/100]^i \qquad \vec{c} = \{c_i\} = \{c_0, ..., c_{N_{\rm C}}\}$$
(2)

$$B(T,\vec{b}) = \sum_{i=0}^{N_{\rm B}} b_i [(T - T_0)/100]^i \qquad \vec{b} = \{b_i\} = \{b_0, ..., b_{N_{\rm B}}\}$$
(3)

and T_0 is a parameter with a preselected fixed value for which $C(T_0) = c_0$ and $B(T_0) = b_0$ hold. The reference lines, $\rho(T, P_{\text{ref}}(T))$ and $P_{\text{ref}}(T)$, were selected in the same way as for 1-alkanols; i.e., at temperatures below the normal boiling temperature the densities at atmospheric pressure $(P_{\rm ref} = 0.101 \ 325 \ MPa)$ were used, while for higher temperatures the values along the saturation curve, i.e. saturated liquid densities and saturated vapor pressures, were employed. If the densities at atmospheric pressure or at saturation for the same sample were also reported along with compressed liquid density data, then those values were preferably used for the reference density, $\rho(T, P_{ref})$. If the reference values were not available in the original source, then densities obtained from the critical evaluation [93-cib] were employed in the correlations. Saturated vapor pressures were calculated from the smoothing functions given by Ambrose and Walton [89-amb/wal].

Adjustable parameters \vec{c} and \vec{b} of function 1 were obtained by minimizing the objective function

$$\phi(\vec{c},\vec{b}) = \sum_{j=1}^{N_{\rm p}} w_j [\rho_j - \rho(T_j, P_j, \vec{c}, \vec{b})]^2$$
(4)

where ρ_{j} , T_{j} , P_{j} is the *j*th experimental data point, $\rho(T_{j}, P_{j}, \vec{c}, \vec{b})$ is the value calculated from function 1 with parameters \vec{c} and \vec{b} for the values T_{j} and P_{j} , and N_{p} is the number of experimental values of density taken into the correlation. Adjustable parameters were calculated by the Marquardt algorithm in double precision to minimize the influence of rounding errors. Statistical weights, w_{j} , in eq 4, defined as

$$w_j = \mu / (\delta \rho_j)^2 \tag{5}$$

where $\delta \rho_j$ is the experimental uncertainty taken from the source database and either given by the authors (preferably) or estimated by a compiler for the *j*th density value in a correlated data set, were adjusted by varying the parameter $\mu_j (\mu_j = 0$ for rejected data points). The calculations of the parameters \vec{c} and \vec{b} were repeated until the final fit was obtained where the deviations between

C: \$12.00 © 1996 American Chemical Society

Samples								
ref	$N_{ m p}$	T_{\min}/K	$T_{\rm max}/{ m K}$	P _{min} /MPa	P _{max} /MPa	meth ^a	data type ^b	sample purity ^c /%
				Pentane (CASF	RN 109-66-0)			
31-bri	30	273.15	368.15	98.2	980.8	vb	D	
35-sag/lac	84	294.26	377.59	0.7	20.7	nd	D	99.3^{d}
42-sag/lac	147	310.93	444.26	0.1	68.9	vl	D	99.7m ^d
53-li/can	36	373.15	448.15	1.1	22.1	nd	D	$99.88 m^d$
69-bra/fre	9	303.15	303.15	50.0	450.0	vb	D	
74-hou	12	295.15	295.15	200.0	2400.0	vs	D	
77-aft/zaw	13	353.17	403.35	0.6	4.0	vl	\mathbf{D}^{h}	$99.96w^e$
79-geh/len	31	273.15	423.15	5.0	50.0	vs/ia	S	
79-geh/len	107	295.15	463.15	3.2	228.6	vs/ia	D	
80-sca/lyo	143	248.15	373.15	0.5	284.5	vb	D	$>99.5^{d}$
84-vas	143	173.15	448.15	0.6	148.3	pi	D	$99.9w^e$
85-kra/mue	88	238.37	465.24	0.7	60.6	ia	\mathbf{D}^h	>99.96m ^e
86-gri/kur	7	453.21	469.02	3.1	4.6	pi	D	99.9w ^e
87-eas/woo	28	278.15	338.15	10.0	60.0	vb	S	$> 99.0^{d}$
87-hol/goe	5	293.15	293.15	2.0	10.0	mo	\mathbf{D}^h	99.6m ^e
87-hol/goe-1 ^k	5	293.15	293.15	2.0	10.0	mo	\mathbf{D}^h	>99.8m ^e
92-kir/len	139	318.00	443.00	7.5	70.3	VS	D	$> 99^{d}$
total	1027	173.15	469.02	0.1	2400.0			
				Hexane (CASR	2N 110-54-3)			
31-bri	27	273.15	368.15	98.2	1078.8	vb	D	
40-kel/fel	44	373.15	498.15	0.6	31.6	pi	D	
51-edu/new	40	273.15	333.15	50.7	506.6	vl	\mathbf{D}^{f}	
54-ste/sag	78	310.93	477.59	0.7	67.3	vl	\mathbf{D}^{g}	$>99.5m^{d}$
57-wal/ric	2	292.15	305.15	4150.0	9570.0	SW	D	
67-mop	38	223.15	298.15	10.2	202.8	vb	D	>98d
69-bra/fre	9	303.15	303.15	50.0	450.0	vb	D	
70-erm/skr	58	495 55	504 35	2.6	3.5	nd	D	
70-kus/tas	20	298 15	353 15	39.2	196.1	vl	D	
72-gol/ada	30	303 15	393 15	50.2 50.7	253.3	vh	D	
72_lve	2	207 15	207 15	130.7	200.0	VD SW	D	
76 ros/gri	222	207.15	472 15	133.0	150.6	Sw pi	D	
70-1 ds/g11	102	200 15	473.13	2.4 50.0	130.0	pi	D	
70-la 79 gou	102	296.15	475.15	50.0	300.0 40.1		D	
78-gou	90	293.13	394.03	5.1	40.1	VI 1 <i>i</i>	D	
78-tak 79. t - l	12	283.15	333.15	55.3	103.5		C	
78-tak	12	283.15	333.15	55.3	103.5	ul	C	ood
79-01C	19	295.00	295.00	1500.0	37000.0	SW	D	999
79-dym/you	21	298.15	3/3.15	48.5	564.0	VD	D	99.7m ^e
79-1sd/dym	4	298.15	348.15	10.0	20.0	ui	D	>998
79-1sa/aym	12	298.15	348.15	50.0	500.0	VD	D	>990
80-sca/lyo	146	248.15	3/3.15	14.8	253.3	VD	D	>99.96m ^a
82-kob/nis	4	298.15	298.15	49.0	196.1	vs	D	00.00
82-kur/gri	65	498.15	507.85	2.9	11.0	pi	D	99.93W ^e
83-kur/gri	28	498.15	498.15	3.0	124.1	pi	D	99.93 ^e
85-mak	72	298.15	333.15	7.4	111.8	nd	D	
85-tak/ter	2	298.15	298.15	50.0	100.0	vb	D	
85-zaw	17	398.15	448.15	0.7	4.2	nd	D	99.88w ^a
87-hol/goe-1 ⁷	5	293.15	293.15	2.0	10.0	mo	\mathbf{D}^n	>99.8m ^e
87-led	70	298.15	358.15	10.0	330.0	vb	D	99.5^{d}
88-mor/aon	71	298.15	313.15	3.2	145.6	vl	D	
91-mel/mel	105	293.15	413.15	10.0	500.0	pi	D	
91-orm/dak	9	298.15	298.15	2.0	33.8	mo	D	99.0^{d}
92-kir/len	76	313.00	448.00	0.2	65.9	VS	D	> 99 ^d
92-sus/bud	50	294.35	294.35	0.8	34.6	mo	D	99.2^{e}
95-sau/hol	36	263.15	353.15	1.0	10.0	mo	\mathbf{D}^h	99.63^{e}
95-sau/hol	36	317.60	472.95	1.9	49.8	ia	\mathbf{D}^h	99.63 ^e
total	1640	223.15	507.85	0.2	37000.0			
				Heptane (CASI	RN 142-82-5)			
31-bri	28	273.15	368.15	49.1	1078.8	vb	D	
37-smi/bea	46	303.15	523.15	0.7	35.6	nd	\mathbf{D}^{f}	
49-bri	11	298.15	298.15	49.0	980.7	VS	D	
51-edu/new	40	273.15	333.15	50.7	506.6	vl	D	
55-nic/rea	111	277.59	510.93	0.1	69.1	vl	D	99.94m ^d
60-boe	59	273.15	393.15	9.9	117.8	vb	D	$99.2m^d$
64-doo	60	303.15	523.15	5.0	500.0	vl	S	· · · · -
66-ata	30	286.15	343 15	101.3	1013 3	vh	D	
69-bra/fre	8	303 15	303 15	50.0	400.0	vh	Ď	
70-kus/tas	20	298 15	353 15	30.0	196.1	vl	n	
72-gol/ada	20	303 15	393.15	50.2	252.2	vh	D D	
78-tok	19	982 15	222 15	55.2	102 5	vD 11 <i>i</i>	C C	
70-lak 78 tok	12	200.10 902 15	333.13 999 15	JJ.J 55 9	103.3	ui- 11/	Ċ	
10-LdK	12	200.10 200.20	310 00	00.0	103.3	ul.		00.0~
00-02a/00y	42	230.2U	348.2U	9.9	190.2	VI vit	U U	33.3III.
00-SCa/Iy0	189	240.15	3/3.23	0.7	200.1	VD	U U	~ 99.9"
oz-dac/eas	1	298.15	298.15	25.0	250.0	VD	D	

 Table 1. Characteristics of Data Sets: Overall Number of Data Points, N_p , Temperature and Pressure Ranges within the Liquid State, T_{min} , T_{max} , P_{min} , and P_{max} , Experimental Method Used, Types of Data, and Purities of Measured Samples

Table 1. (Continued)

_

ref	N _p	T_{\min}/K	T _{max} /K	P _{min} /MPa	P _{max} /MPa	meth ^a	data type ^b	sample purity ^c /%
			Hepta	ne (CASRN 142	2-82-5) (Continue	ed)		
82-zaw/vej	18	423.15	523.15	0.4	5.3	nd	D	$99.99 \mathrm{w}^d$
85-mak	71	298.15	348.15	7.2	111.6	nd	D	
85-mur/tra	206	198.25	310.65	10.1	263.4	ul	Cg	00.0
85-vas 87 hol/goo	230	188.15	523.15	0.3	147.5	pi mo	D D^h	$99.9W^e$
$87 - hol/goe = 1^k$	5 5	293.15	293.15	2.0	10.0	mo	D^{μ}	$>99.8111^{\circ}$
88-dym/mal	10	298 15	298 15	2.0 4 9	240.2	vb	D	99.5m ^d
88-dym/mal	17	298.15	310.65	5.2	271.1	vb	D	$99.5m^d$
89-bet/pal	8	302.51	302.51	15.5	94.9	mo ^j	D	ooronn
89-bet/pal	8	302.51	302.51	15.5	94.9	mo ^j	D	
89-tos/fig	88	298.15	373.15	1.0	100.0	bu	D	$99.9 \mathbf{w}^d$
91-kan/lag	12	313.15	353.15	10.0	40.0	mo	D	$>99^{d}$
91-mal/woo	134	278.15	338.15	2.5	394.3	vb	D	99.994a ^e
91-pap/zia	9	298.15	298.15	2.0	33.8	mo	D	99.5 ^a
92-sus/bud	50	294.35	294.35	0.8	34.0	mo	D	99.8°
total	1576	188.15	523.15	0.1	1078.8			
04.1		070 45	000.45	Octane (CASR	N 111-65-9)		P	
31-bri	22	273.15	368.15	49.1	980.8	vb	D	
42-fel/wat	89	3/3.15	548.15	0.5	30.4	nd	D	
49-011 51. odu/now	10	290.15	290.15	49.0	490.3	vs	D	
60-boe	47	303 15	393 15	99	117.8	vh	D	99 9m ^d
69-bra/fre	-1/	303.15	303.15	50.0	400.0	vb	D	00.011
71-ben/win	70	258.15	258.15	0.4	148.4	vb	\mathbf{D}^{g}	$99.92m^d$
72-gol/ada	30	303.15	393.15	50.7	253.3	vb	D	
78-gou	66	293.15	393.15	2.5	40.5	vl	D	
78-tak	12	283.15	333.15	55.3	103.5	ul ⁱ	С	
78-tak	12	283.15	333.15	55.3	103.5	uli	C	
80-sca/lyo	191	248.15	373.35	4.9	196.2	vb	D	$>99.81m^{d}$
82-dym/rob	25	298.03	348.14	20.2	479.5	VD	D	99.5m ^a
85 tok/tor	18	298.15	348.13	7.1	111.4	na	D	
90-won/hay	18	298.15	238.13	07	6.9	mo	D	gg d
91-ban/gar	55	318.15	373.15	1.0	10.0	mo	D^h	98.8m ^e
91-dix/far	19	298.15	323.15	7.9	103.0	mo/bu	Ď	99.9^{d}
91-tan/hos	16	298.15	348.15	9.9	151.0	va	D	98.0 ^e
92-kir/len	47	323.00	448.00	8.0	66.5	vs	D	$> 99^{d}$
total	853	248.15	548.15	0.4	980.8			
				Nonane (CASR	N 111-84-2)			
53-car/sag	88	310.93	510.93	0.2	69.2	vl	\mathbf{D}^{g}	$99.6m^d$
60-boe	48	303.15	393.15	9.9	117.8	vb	D	$99.2m^d$
64-doo	66	303.15	573.15	5.0	500.0	vl	S	
78-gri/lin	502	303.15	423.15	20.0	800.0	vl	D	99.79 ^e
80-sca/lyo	160	248.15	373.15	2.0	301.2	vb	D	$>99.5^{d}$
91-ban/gar	60	313.15	373.15	1.0	10.0	mo	\mathbf{D}^{h}	99.8m ^e
total	924	248.15	573.15	0.2	800.0			
_				Decane (CASR	N 124-18-5)	_		
31-bri	17	273.15	368.15	49.1	784.6	vb	D	
40-sag/lav	55	294.26	394.26	1.7	24.1	vl	\mathbf{D}^{r}	
42-rea/old	217	310.93	510.93	1.4	68.9	vl	S	
49-DF1 70 spy/win	112	298.15	298.15	49.0	294.2	vs vb	D Dg	
70-Sily/will 78-dou	66	290.15	303.15	2.0	40.5	vD	D∘ D	
80-sca/lvo	61	248.15	373.25	14.8	294.3	vb	D	>99m ^d
82-dym/rob	16	298.31	373.11	36.8	420.2	vb	D	$>99m^d$
83-geh/len	221	313.15	613.15	0.2	266.2	vs/ia	D	$99.5m^e$
84-cul/mat	4	303.56	310.94	6.9	20.6	mo	\mathbf{D}^h	99.1m ^e
85-mak	75	298.15	348.15	7.1	111.1	nd	D	
85-tak/ter	2	298.15	298.15	50.0	100.0	vb	D	,
86-gat/woo	18	298.14	399.81	0.2	20.5	mo	D	99.4m ^d
δ /-hol/goe	5	293.15	293.15	2.0	10.0	mo	D^{μ}	>99.7m ^e
o/-1101/g0e-1^ 01_bap/gar	5 60	293.15 312.15	293.15 272.15	2.0	10.0	1110 mo	D" Dh	~ 99./m ^e
91-ball/gal 92-sus/bud	50	515.15 29 <u>4</u> 25	373.13 294 25	1.U 0.8	10.0 34 ƙ	mo	D D	90.911° 99 6e
total	000	040.17	010 1F	0.0	704.0	1110	D	00.0
total	990	248.15	613.15	0.2	784.6			
04.1		000 1-	L	Indecane (CASE	RN 1120-21-4)	,	~	
64-doo	70	303.15	573.15	5.0	500.0	vl	S	
80-ian/wur	148	238.25	313.25	10.0	300.0	vs	D	
total	218	258.25	573.15	5.0	500.0			
]	Dodecane (CAS	RN 112-40-3)			
49-bri	3	298.15	298.15	49.0	147.1	vs	D	
58-cut/mcm	70	310.95	408.15	34.5	689.1	vb	D	

Table 1. (Continued
------------	-----------

	,							
ref	$N_{ m p}$	T_{\min}/K	$T_{\rm max}/{ m K}$	P _{min} /MPa	$P_{\rm max}/{\rm MPa}$	meth ^a	data type ^b	sample purity ^c /%
			Dodec	ane (CASRN 11	2-40-3) (Contin	ued)		
60-boe	24	303.15	393.15	9.9	117.8	vb	D	$99.2 m^d$
70-sny/win	92	298.15	358.15	1.7	416.9	vb	\mathbf{D}^{g}	
78-gou	90	298.15	393.75	5.1	40.1	vl	D	
80-lan/wur	88	268.45	313.25	10.0	250.0	vs	D	
82-dym/rob	31	298.19	373.26	17.1	441.9	vb	D	$99m^d$
83-rou/ric	15	323.10	423.10	2.1	30.6	vb/cs	D	99^d
85-eas/woo	12	298.27	323.35	25.0	150.0	vb	S	
85-mak	67	298.15	348.15	7.2	111.2	nd	D	
85-tak/ter	2	298.15	298.15	50.0	100.0	vb	D	
91-tan/hos	18	298.15	348.15	19.5	150.8	va	D	99.0 ^e
total	512	268.45	423.10	1.7	689.1			
04.1	70	000 15	570 15	Tridecane (CAS	5RN 629-50-5)	,	C	
64-doo	70	303.15	573.15	5.0	500.0	vi	5	
			Т	etradecane (CA	SRN 629-59-4)			
70-sny/win	113	298.15	358.15	0.9	366.8	vb	\mathbf{D}^{g}	
78-gou	90	298.15	393.35	5.1	40.1	vl	D	
85-tak/ter	1	298.15	298.15	50.0	50.0	vb	D	
87-hol/goe-11	5	293.15	293.15	2.0	10.0	mo	\mathbf{D}^h	$> 99.5^{d}$
total	209	293.15	393.35	0.9	366.8			
			р	entadecane (CA	SRN 629-62-9)			
58-cut/mcm	63	310.95	408.15	34.5	654.6	vb	D	
			H	Iexadecane (CA	SRN 544-76-3)			
60-boe	40	303.15	393.15	9.9	117.8	vb	D	$99.2 \mathrm{m}^d$
70-snv/win	88	298.15	358.15	0.4	290.2	vb	\mathbf{D}^{g}	
78-gou	75	314.75	392.15	5.1	40.1	vl	D	
79-dvm/vou	23	298.15	373.15	12.0	450.5	vb	D	99.6m ^e
85-gla/pet	63	303.15	360.15	2.0	17.7	vl	\mathbf{D}^h	99.9m ^e
87-hol/goe	5	293.15	293.15	2.0	10.0	mo	\mathbf{D}^{h}	$>99^{d}$
87-hol/goe-1 ^k	5	293.15	293.15	2.0	10.0	mo	\mathbf{D}^h	>99d
87-mat/rod	10	323.15	564.15	1.4	3.5	XX	D	99m ^e
91-ban/gar	60	318.15	373.15	1.0	10.0	mo	\mathbf{D}^{h}	99.4m ^e
91-tan/hos	13	298.15	348.15	9.9	150.5	va	Ď	98.0 ^e
total	382	293.15	564.15	0.4	450.5		-	

Method used for measurements: bu, buoyancy method; cb, constant-volume cell with bellows; cl, constant-volume cell with liquid piston; ia, isochoric apparatus; mo, mechanical oscillator method; mo/bu, a combination of a vibrating-wire method with a buoyancy principle; nd, not described or stated in the reference; pi, piezometer of unspecified type; sw, shock wave method; ul, ultrasound velocity method; va, Aime method; vb, variable-volume cell with bellows; vb/cs, combination of vb cell with external solid piston syringe; vl, variable-volume cell with bellows; vb/cs, combination of vb cell with external solid piston syringe; vl, variable-volume cell with solid piston; vs/ia, vs cell used in isochoric mode; xx, other methods. For the classification and description of the methods, see ref 85-tek/cib. ^b D, direct experimental data; S, smoothed data; C, densities calculated from ultrasound velocities. ^c No letter, unspecified percent; a, mass percent assuming water as an impurity; m, mole percent; w, mass percent. ^d Purity of source material is given only. ^e Final purity of the sample. ^fITS-27 declared by the researchers. ^gITS-48 declared by the researchers. ^h IPTS-68 declared by the researchers. ⁱ Two density data sets calculated from the same measured sound velocities by a classical integration and by a modified procedure, respectively. ^jTwo data sets evaluated by absolute and relative methods, respectively. Same data are presented in ref 86-hol/goe.

retained experimental and smoothed values were roughly equal to the modified experimental uncertainties, $\delta \rho_j / \mu_j^{1/2}$, i.e., where the weighted standard deviation of the fit, s_w (see below), was close to unity.

Results

The results are summarized in Tables 2 and 3. Table 2 records the values of the parameters of eq 1 for each alkane along with some statistical information of the fits defined as follows:

RMSD = {
$$\sum_{j=1}^{N_{\rm p}} [\rho_j - \rho(T_j, P_j, \vec{c}, \vec{b})]^2 / N_{\rm p}$$
}^{1/2} (6)

$$\text{RMSD}_{\rm r}/\% = 100 \{ \sum_{i=1}^{N_{\rm p}} [1 - \rho(T_{j_i} P_{j_i} \vec{c}, \vec{b}) / \rho_j]^2 / N_{\rm p} \}^{1/2} \quad (7)$$

bias =
$$\sum_{j=1}^{N_{\rm p}} [\rho_j - \rho(T_{j^*} P_{j^*} \vec{c}, \vec{b})] / N_{\rm p}$$
 (8)

$$\pm = \sum_{j=1}^{N_p} \operatorname{sign}[\rho_j - \rho(T_j, P_j, \vec{c}, \vec{b})] \cdot 1$$
(9)

$$s_{\rm w} = \left[\phi/(N_{\rm p} - N_{\rm C} - N_{\rm B} - 2)\right]^{1/2}$$
 (10)

where N_p is the overall number of experimental data points retained for the correlation. Temperature and pressure ranges of validity of the fits given in the table are informative only and allow one to avoid extrapolation using eq 1 with the parameters from Table 2 beyond P-T areas shown in the figures (Figure 1). That plot provides crude information on the distribution of the retained data points in the P-T area for each fit performed.

Table 3 summarizes some statistical information derived from the fits. Only those data subsets for which the temperature and pressure ranges are displayed in the table were retained in the correlations. The statistical characteristics of these subsets refer only to the data points retained in the correlation. On the other hand, the characteristics of the rejected data subsets, i.e. those for which no T and P ranges are given in the table, illustrate the deviations of the rejected data points from eq 1, but

Figure 1. Temperature and pressure coordinates of data points retained for the correlations.

only for those values within T-P areas of the retained data (see Figure 1); thus N_p and the characteristics correspond

to the rejected data points within the T-P ranges of the fits.

Table 2. Parameters c _i , b _i , and T ₀ of Eq 1, Temperature and Pressure Ranges, ^a T _{min} , T _{max} , P _{min} , and P _{max} , Absolute,
RMSD, and Relative, RMSD _r , Root Mean Square Deviations, Biases, bias, Number of Data Points, $N_{\rm p},\pm$, and Weighted
Standard Deviations, sw

	pentane	hexane	heptane	e octai	ne			penta	ane	hexan	e heptan	e octane
<i>C</i> 0	0.088 843	B 0.092 3	80 0.091 6	0.092	2 825	$T_{\text{max}}/\mathbf{K}$		443.5	53	498.15	5 510.93	473.15
c_1/K^{-1}	-0.003 788	B -0.004 5	22 -0.001 0	99 -0.005	5741	$P_{\rm min}/{\rm MP}$	a	0.1	4	0.57	7 0.18	0.42
$c_2/{ m K}^{-2}$			-0.0015	13		$P_{\rm max}/{\rm MP}$	a	284.5	50	1078.83	3 394.34	404.10
<i>b</i> ₀ /MPa	35.8259	56.0622	64.0193	73.853	39	RMSD/k	g•m ^{−3}	0.7	770	0.69	93 0.93	3 0.477
$b_1/MPa\cdot K^{-1}$	-44.2380	-56.5365	-53.4677	-61.770	06	RMSD _r /9	<i>%</i>	0.1	121	0.11	2 0.15	3 0.069
$b_2/MPa\cdot K^{-2}$	17.7963	18.6982	15.7048	24.698	82	bias/kg•1	m ⁻³	0.0	071	-0.03	33 0.17	7 -0.048
<i>b</i> ₃/MPa•K ^{−3}	-5.7066	-2.9566	-3.9551	-13.743	38	$N_{\rm p}$		509		796	738	517
<i>b</i> ₄/MPa∙K ⁻⁴	1.4456	0.2334	0.8103	4.233	38	±		77		52	46	41
T_0/K	310.93	298.15	298.15	298.15		$S_{\rm W}$		0.9	981	0.95	55 1.03	0 0.820
T_{\min}/\mathbf{K}	173.15	223.15	198.25	248.15								
		daaana	undaaana	dadaaa						decene	undesens	dadaaana
	nonane	decane	undecane	dodeca	ane			nonai	ne o	lecane	undecane	dodecane
<i>c</i> ₀	0.094 316	0.087 993	2 0.090 3	28 0.09	0 545	$T_{\text{max}}/\mathbf{K}$		510.9	35	503.15	423.15	393.15
$c_{1}/{ m K}^{-1}$	-0.002960	$-0.000\ 81$	6 -0.001 1	05		$P_{\rm min}/{\rm MPa}$	a	0.6	0	0.20	5.00	2.03
<i>b</i> ₀ /MPa	63.4470	83.5746	83.6261	90.602	28	P_{max}/MP	a	800.0	06	355.88	500.00	441.90
$b_1/MPa\cdot K^{-1}$	-54.0094	-61.9418	-44.4334	-58.523	80	RMSD/k	g∙m⁻³	0.4	68	0.745	0.344	0.666
<i>b</i> ₂/MPa∙K ^{−2}	17.5175	21.8935	58.8378	70.52	09	RMSD _r /%	6	0.0	64	0.102	0.044	0.083
<i>b</i> ₃/MPa∙K ⁻³	-3.9433	-6.4316	-132.7102	-117.92	46	bias/kg•r	n ⁻³	0.0	31	-0.056	0.046	0.052
<i>b</i> ₄/MPa∙K ⁻⁴	0.6272	1.0545	69.7765	63.10	06	$N_{\rm p}$		692	4	139	181	201
T/K	333.15	294.35	298.25	298.15		±		0	-	-37	11	39
/K	248.15	248.15	258.25	268.45		$S_{\rm W}$		0.9	51	0.847	1.001	0.938
	tridecane	tetradecane	pentadecane ^b	hexadecane			trideca	ane te	tradeca	ane pe	entadecane ^b	hexadecane
	0.087 988	0.090 131	0.088 503	0.090 512	$P_{\rm min}/{\rm M}$	IPa	5.0	0	0.89		34.46	0.39
/MPa	89.5217	78.3594	51.7990	73.9549	P_{max}/N	1Pa	500.0	0	366.80	1	654.64	450.50
/MPa•K ^{−1}	-56.5397	-49.2510	-35.3533	-47.6742	RMSD	/kg∙m ⁻³	0.6	30	0.31	3	0.389	0.368
/MPa•K ^{−2}	10.0334		12.5370	20.6979	RMSD	r/%	0.0	80	0.04	0	0.048	0.047
/MPa•K ^{−3}				26.0659	bias/kg	g•m ^{−3}	0.1	12	0.02	2	0.010	0.045
/K	303.15	338.15	408.15	358.15	$N_{\rm p}$	2	50		179		63	171
/K	303.15	293.15	310.95	293.15	±		16		7		-9	-5
/K	473.15	358.15	408.15	393.15	$S_{\rm W}$		1.0	59	1.04	3	0.960	0.944

The low limit of pressure ranges is 0.1 MPa or a saturation pressure (whichever is higher) for all fits; P_{\min} is the lowest pressure in a particular set of compressed liquid density data retained for the corelation. ^{*b*} See discussion in Results.

Data points at high temperatures of some retained data sets were rejected in those cases where deviations from the Tait equation exceeded 10 kg·m⁻³ and it was not possible to improve the fit by additional parameters b_i and c_i . Thus

P-T ranges of some fits do not cover the entire original range of retained data sets. There might be several reasons for those large deviations; lower accuracy of data and systematic errors in measured variables at very high temperatures and pressures, decomposition of the substance at high temperatures, a poorer performance of the Tait equation in the vicinity of the gas-liquid critical point, and at last a reason discussed below.

In several cases an inconsistency of the data at high temperatures with those at lower temperature ranges was noticed by examining the shape of the temperature dependence of the Tait parameter B(T, b). Since the temperature dependence of the parameter $C(T,\vec{c})$ is moderate (if any, see Table 2), the temperature dependence of isothermal compressibility derived from the Tait equation is determined mainly by the temperature dependence of the parameter $B(T, \vec{b})$. Therefore the function $B(T, \vec{b})$ should be a decreasing function of temperature to describe the increase of isothermal compressibility with increasing temperature along an isobar and no local minimum should appear on it to avoid a maximum in isothermal compressibility. The local minima on $B(T, \overline{b})$ were observed for undecane (around 460 K) and hexadecane (around 410 K) when the correlations were performed in temperature ranges as wide as possible. Therefore the data at high temperatures for these two alkanes were also rejected. The examination of the function $B(T, \vec{b})$ of the final fits (Table 2) reveals that this function decreases as either a straight line or a convex function of increasing temperature without any inflection point for most of the fits (pentane through decane, tridecane through pentadecane), while one or two inflection points were observed for the other alkanes, i.e., for hexadecane around 330 K (the function is slightly concave, being close to the straight line at lower temperatures), for undecane around 320 K and 380 K, and for dodecane around 325 K and 365 K (the functions B(T,b)) are slightly concave between these temperatures for the last two alkanes with the effect being more pronounced in the case of undecane). The inflection points on the B(T, b)function signal the mutual inconsistency of data taken for the correlation. It can be clearly seen in the case of undecane where two data sets with slightly overlapping temperature ranges were available (see Tables 1 and 3). When the Tait equation was fit to each data set alone, good fits with $N_{\rm C} = 0$ and $N_{\rm B} = 2$ but with different values of parameters c_i and b_i were obtained, while a larger number of parameters c_i and b_i was required to achieve a good fit when both data sets were correlated together. Consequently, the inflection points and even a minimum (see above) on the function B(T,b) appeared. Since the smoothed values reported by Doolittle [64-doo] at temperatures above the normal boiling point are based on a hypothetical specific volume at zero pressure, the data from this source up to temperatures close to the normal boiling point were retained in the correlations (this holds also for heptane, nonane, and tridecane) while those at higher temperatures were rejected. Moreover, the saturated liquid densities obtained by tentative interpolations between Doolittle's values at P = (0, 5, and 10) MPa using the Hudleston equation (used by Doolittle to smooth the data) did not show a good agreement with the reference line [93-cib]. However, even after the values in a high-temperature range were rejected, the effect of the inconsistency remained, causing the inflection points. Thus the inflection points observed on the $B(T, \vec{b})$ curve for the above men-

Journal of Chemical and Engineering Data, Vol. 41, No. 4, 1996 663

Table 3. Statistical Characteristics of Individual Data Sets for the Fits in Table 2: Temperature and Pressure Ranges Taken into the Correlations, T_{min} , T_{max} , P_{min} , and P_{max} , Absolute, RMSD, and Relative, RMSD_r, Root Mean Square Deviations, Biases, bias, Number of Data Points, N_{p} , \pm , and Origin of the Reference Density Values Used in the Correlations, RD^a

ref	T_{\min}/K	$T_{\rm max}/{\rm K}$	P _{min} /MPa	P _{max} /MPa	RMSD/kg⋅m ⁻³	RMSD _r /%	bias/kg∙m ⁻³	$N_{\rm p}$	±	RD ^a
					Pentane					
31-bri					7.162	0.999	6.895	6	6	(o)
35-sag/lac	310.93	377.59	0.7	20.7	0.592	0.097	0.262	56	28	0
42-sag/lac	310.93	410.93	0.1	68.9	0.768	0.124	0.083	118	50	(o)
53-li/can					1.529	0.296	0.104	27	-1	(o)
69-bra/fre					1.818	0.255	0.421	5	1	0
74-nou 77 oft/zeru	959 17	402.25	0.0	4.0	1.986	0.270	-1.986	19	-1	0
77-ait/zaw	333.17	403.35	0.6	4.0	1.000	0.178	0.723	12	12	0
79-geh/len					13 851	2 092	8 884	89	87	e
80-sca/lvo	248.15	373.15	0.5	284.5	0.812	0.120	0.070	134	6	(0)
84-vas	173.15	423.15	0.6	99.5	1.068	0.165	0.333	76	54	e
85-kra/mue	238.37	443.53	0.7	60.6	0.353	0.064	-0.193	75	-53	е
86-gri/kur								0	0	е
87-eas/woo	278.15	338.15	10.0	60.0	0.772	0.123	-0.609	28	-24	0
87-hol/goe	293.15	293.15	2.0	10.0	0.017	0.003	0.012	5	3	0
87-hol/goe-1	293.15	293.15	2.0	10.0	0.017	0.003	0.004	5	1	0
92-kir/len					6.929	1.186	-6.570	139	-139	е
	070 45	000.45		4070.0	Hexane	0.404	0.040	07		
31-bri	273.15	368.15	98.2	1078.8	0.997	0.121	0.343	27	11	(0)
40-Kel/Iel	373.13	498.15	0.6	31.0 506.6	1.201	0.276	-0.250	43	-15	e
51-euu/new	273.13	333.15	50.7	500.0	0.599	0.079	-0.194	34 78	-4 68	0
57-wal/ric					2.031	0.334	1.711	10	00	e 0
67-mon	223.15	298.15	10.2	202.8	0.414	0.056	0.016	38	6	0
69-bra/fre	303.15	303.15	150.0	400.0	0.491	0.063	-0.373	5	-5	0
70-erm/skr					2.764	0.713	2.394	18	12	e
70-kus/tas					1.353	0.192	-0.276	20	-6	(o)
72-gol/ada					10.570	1.507	-9.459	30	-30	0
72-lys					14.152	1.844	-13.958	2	-2	0
76-ras/gri	223.15	473.15	2.4	150.6	0.613	0.093	0.336	221	121	(o)
76-ta	05415	004.05	F 1	40.1	2.822	0.379	-1.154	102	-26	е
78-gou 78 tol	354.15	394.65	5.1	40.1	0.307	0.049	0.077	45	-/	e
78-tak 78 tak					9.944	1.304	8.203 0.561	12	12	e
79-dic					1.000	0.200	0.501	12	0	e e
79-dvm/vou					2.093	0.286	-1.674	27	-23	0
79-isd/dym	298.15	348.15	10.0	20.0	0.507	0.080	0.415	4	4	0
79-isd/dym	298.15	348.15	50.0	500.0	1.102	0.142	-0.895	11	-9	0
80-sca/lyo	248.15	373.15	14.8	253.3	0.849	0.118	-0.546	109	-65	(o)
82-kob/nis					1.585	0.213	1.522	4	4	0
82-kur/gri					2.768	0.674	2.560	9	9	e
83-kur/gri	000 15	000 15	~ 4	111.0	9.646	1.612	-5.281	28	-8	е
85-mak	298.15	303.15	7.4	111.8	0.636	0.091	-0.616	34	-34	0
85-raw	298.15	298.15 123 15	50.0 0.7	100.0	0.192	0.027	-0.161	11	-2	0
87-hol/goe-1	293 15	293 15	2.0	10.0	0.000	0.032	0.196	5	5	0
87-led	200110	200110	210	1010	5.069	0.671	4.294	70	70	0
88-mor/aon	298.15	313.15	3.2	145.6	0.269	0.039	0.197	71	59	0
91-mel/mel	353.15	413.15	10.0	500.0	0.953	0.149	-0.159	55	-5	(o)
91-orm/dak	298.15	298.15	2.0	33.8	0.570	0.085	-0.541	9	-9	0
92-kir/len					3.842	0.665	-1.021	76	-8	е
92-sus/bud	000.45	050 45	1.0	10.0	1.061	0.156	0.998	50	50	0
95-sau/hol	263.15	353.15	1.0	10.0	0.178	0.027	0.138	36	30	(0)
95-sau/noi	317.60	472.95	1.9	49.8	0.506	0.089	-0.441	36	-34	е
01 ht					Heptane	0.470	0 5 4 5	14	14	(-)
31-Drl	499.15	179 15	0.7	25.6	3.795	0.479	3.343	14	14	(0)
37-Silli/Dea 10 bri	423.15	475.15	0.7	55.0	1.441	0.241	1.034	19	19 _8	e
51-edu/new					1 369	0.170	1.052	28	20	0
55-nic/rea	377.59	510.93	0.2	69.1	2.403	0.415	1.943	59	51	e
60-boe	363.15	393.15	9.9	117.8	0.545	0.080	-0.417	24	-16	0
64-doo	303.15	323.15	5.0	300.0	0.353	0.050	0.272	18	12	0
66-ata					3.028	0.386	2.474	9	9	0
69-bra/fre					3.206	0.408	2.966	7	7	0
70-kus/tas	298.15	353.15	39.2	196.1	0.374	0.051	-0.048	20	-6	0
72-gol/ada					5.924	0.812	-3.714	30	-24	0
78-tak	000 15	000 15	FF 0	100 5	1.203	0.164	-0.179	12	2	e
/ 8-tak	283.15	555.15	55.3	103.5	0.288	0.040	0.152	11	5	e
60-02a/00y 80-sca/lyo	348 05	372 95	0.7	200 1	0.917	0.127	-0.003	42 10	-2 10	U (A)
82-bac/eas	298 15	298 15	25.0	250.1	0.332	0.000	0.043	49 7	19	(0)
82-zaw/vei	448.15	498.15	0.7	5.3	1.018	0.198	0.175	8	2	0
85-mak	298.15	323.15	7.2	110.7	0.282	0.039	0.060	55	5	0

664	Journal	of	Chemical	and	Engineering	Data,	Vol.	41,	No.	4,	1996
-----	---------	----	----------	-----	-------------	-------	------	-----	-----	----	------

Table 3. (Continued)

		T /V	D /MDa		DMCD/ltar.m=3	DMCD /0/	hio o /l. e3	λ7		
rei	I_{\min}/K	$I_{\text{max}}/\mathbf{K}$	P _{min} /MPa	P _{max} /MPa	RMSD/kg·m °	RMSD _r /%	blas/kg·m ³	IVp	±	KD ^a
95 mur/tro	108 25	210.65	10.1	Hepta	ne (Continued)	0.021	0.010	206	-94	0
85 yas	190.25	J08 15	10.1	205.4	0.243	0.031	0.019	200 67	-24	(0)
87-hol/goe	293 15	293 15	2.0	10.0	0 1 1 4	0.230	0.097	5	5	(0)
87-hol/goe-1	293.15	293.15	2.0	10.0	0.114	0.016	0.097	5	5	0
88-dvm/mal	200.10	200.10	2.0	10.0	0.970	0.128	-0.815	10	-10°	0
88-dym/mal	298.15	310.65	5.2	271.1	0.702	0.090	0.359	17	7	Ő
89-bet/pal	200110	010100	012	2111	0.908	0.128	-0.766	8	-8	õ
89-bet/pal	302.51	302.51	15.5	94.9	0.428	0.060	-0.068	7	-1	0
89-tos/fig	353.15	373.15	10.0	100.0	0.657	0.097	-0.275	27	-7^{-1}	(0)
91-kan/lag					2.907	0.431	-2.749	12	-12	0
91-mal/woo	278.15	338.15	2.5	394.3	0.557	0.072	-0.345	134	-54	(0)
91-pap/zia					0.686	0.098	-0.613	9	-9	0
92-sus/bud					0.888	0.127	0.846	50	50	0
					Octane					
31-bri					1.557	0.201	0.765	13	5	(o)
42-fel/wat	448.15	473.15	0.5	30.4	1.044	0.188	0.481	23	3	е
49-bri					2.667	0.336	-2.652	8	-8	0
51-edu/new					2.851	0.359	-2.218	27	-27	0
60-boe	303.15	393.15	9.9	117.8	0.223	0.031	0.035	46	12	0
69-bra/fre					2.131	0.270	-2.070	8	-8	0
71-ben/win	258.15	258.15	0.4	148.4	0.549	0.071	-0.193	70	-6	0
72-gol/ada					7.020	0.905	-2.975	30	2	0
78-gou	313.15	373.15	2.5	40.5	0.541	0.079	-0.080	44	-6	0
78-tak			-	4.0.5	1.210	0.161	-0.840	12	-8	е
78-tak	283.15	333.15	55.3	103.5	0.479	0.063	-0.330	12	-8	e
80-sca/lyo	248.15	373.35	4.9	196.2	0.503	0.067	-0.188	150	-2	(o)
82-dym/rob	298.03	348.14	20.2	404.1	0.742	0.096	0.199	21	5	0
85-mak	298.15	348.15	7.1	111.4	0.109	0.015	0.007	78	-2	0
85-tak/ter	298.15	298.15	50.0	100.0	0.150	0.020	0.144	2	2	0
90-won/hay	010 15	070 15	1.0	10.0	2.398	0.347	-1.056	18	-8	0
91-ban/gar	318.15	373.15	1.0	10.0	0.197	0.030	0.135	55	39	0
91-dix/far	000 15	040.15		151.0	1.683	0.230	1.459	19	17	0
91-tan/hos	298.15	348.15	9.9	151.0	0.245	0.032	-0.040	16	4	0
92-kir/len					10.823	1.713	-9.757	47	-47	e
					Nonane					
53-car/sag	444.26	510.93	0.6	67.6	0.932	0.146	0.332	28	8	e
60-boe	303.15	393.15	9.9	98.2	0.482	0.066	-0.282	30	-10	0
64-doo	303.15	423.15	5.0	500.0	1.038	0.144	0.473	35	21	(o)
78-gri/lin	303.15	423.15	20.0	800.0	0.339	0.044	0.039	502	-42	0
80-sca/lyo	248.15	298.15	2.1	294.3	0.801	0.102	-0.577	37	-21	(o)
91-ban/gar	313.15	373.15	1.0	10.0	0.142	0.021	0.104	60	44	0
					Decane					
31-bri					4.451	0.532	3.562	15	13	(o)
40-sag/lav					1.467	0.213	1.063	55	35	0
42-rea/old					4.424	0.642	3.825	186	170	0
49-bri	298.15	298.15	147.1	294.2	0.757	0.091	0.354	4	2	0
70-sny/win	298.15	358.15	2.0	655.9	0.611	0.079	-0.337	112	-58	0
78-gou					4.414	0.610	4.146	66	66	(o)
80-sca/lyo	248.15	373.25	14.8	294.3	0.917	0.116	0.465	61	27	(0)
82-dym/rob	298.31	373.11	36.8	420.2	1.286	0.157	-0.041	16	-6	0
83-geh/len	313.15	503.15	1.3	186.3	1.163	0.171	-0.174	84	-24	е
84-cul/mat					0.937	0.128	0.858	4	4	e
85-mak	298.15	348.15	7.1	111.1	0.158	0.021	0.006	75	5	0
85-tak/ter					4.733	0.610	4.727	2	2	0
86-gat/woo	298.14	399.81	0.2	20.5	0.343	0.051	-0.193	17	-7	e
87-hol/goe	293.15	293.15	2.0	10.0	0.146	0.020	0.129	5	5	0
87-hol/goe-1	293.15	293.15	2.0	10.0	0.146	0.020	0.129	5	5	0
91-ban/gar	313.15	373.15	1.0	10.0	0.138	0.020	0.016	60	14	0
92-sus/bud					0.826	0.111	0.776	50	50	0
				Т	Undecane					
64-doo	303.15	423.15	5.0	500.0	0.456	0.061	0.216	33	11	(0)
80-lan/wur	258.25	313.25	10.0	300.0	0.313	0.039	0.008	148	0	0
					Dadaaar -			-	-	-
40 b				I	Judecane	0.074	F 0.0F	0	0	-
49-DF1					5.403	0.074	-5.065	3	-3	0
58-cut/mcm	000 15	000 15	0.0	1170	5.554	0.685	-4.395	43	-37	0
bU-DOe	333.15 220.1#	393.15	9.9	117.8	0.596	0.078	-0.180	18	0	0
70-sny/win	338.15	338.15	2.0	416.9	0.927	0.116	-0.008	36 75	0	0
78-gou	000 45	005 05	10.0	000.0	4.642	0.622	-2.709	/5	-69	е
80-lan/wur	208.45	303.25	10.0	200.0	0.300	0.038	0.064	4/	13	0
82-aym/rob	298.19	3/3.26	1/.1	441.9	0.888	0.107	0.224	31	9	0
83-rou/ric	000.07	000 05	05 0	150.0	1.117	0.152	0.920	10	10	0
85-eas/w00	298.27	323.35	25.0	150.0	0.419	0.054	0.248	12	4	е
85-mak	348.15	348.15	7.6	111.2	0.321	0.042	-0.042	17	3	0
85-tak/ter	298.15	298.15	50.0	100.0	0.554	0.071	-0.552	2	-z	0

Table 3. (Continued) ref T_{min}/K T_{max}/K P_{min}/MPa

ref	T_{\min}/K	$T_{\rm max}/{ m K}$	P _{min} /MPa	P _{max} /MPa	RMSD/kg∙m ⁻³	RMSD _r /%	bias/kg∙m ⁻³	$N_{ m p}$	±	RD^{a}
				Dodeca	ne (Continued)					
91-tan/hos	298.15	348.15	19.5	150.8	0.288	0.038	0.163	18	12	0
				т	ridecane					
64-doo	303.15	473.15	5.0	500.0	0.630	0.080	0.112	50	16	(0)
				 T.	4 J					(-)
				16	etradecane				-	
70-sny/win	298.15	358.15	0.9	366.8	0.297	0.037	-0.045	113	-5	0
78-gou	298.15	358.15	5.1	40.1	0.354	0.047	0.151	60	12	е
85-tak/ter	298.15	298.15	50.0	50.0	0.102	0.013	-0.102	1	-1	0
87-hol/goe-1	293.15	293.15	2.0	10.0	0.011	0.001	0.004	5	1	0
				Pe	ntadecane					
58-cut/mcm	310.95	408.15	34.5	654.6	0.389	0.048	0.010	63	-9	0
				Н	exadecane					
60-boe	393.15	393.15	9.9	117.8	0.411	0.055	0.067	12	2	0
70-snv/win	338.15	358.15	0.4	290.2	0.378	0.048	-0.095	53	-7	0
78-gou					0.813	0.108	0.490	75	35	e
79-dym/you	298.15	373.15	12.0	450.5	0.614	0.077	0.414	23	13	0
85-gla/pet					1.727	0.229	-1.539	63	-57	e
87-hol/goe	293.15	293.15	2.0	10.0	0.023	0.003	-0.022	5	-5	0
87-hol/goe-1	293.15	293.15	2.0	10.0	0.021	0.003	-0.019	5	-5	0
87-mat/rod					1.081	0.145	-0.956	4	-4	е
91-ban/gar	318.15	373.15	1.0	10.0	0.144	0.019	-0.036	60	-12	0
91-tan/hos	298.15	348.15	9.9	150.5	0.525	0.067	0.368	13	9	0

o and (o), from the same source as the compressed liquid density data, available for a part of the temperature range only, respectively; e, from the smoothing equation given in ref 93-cib.

Table 4. Comparison of Relative Densities, $\rho_{rel} = \rho(T, P)/\rho(T, P_{ref})$ (See Eq 1), Calculated from the Fits in Table 2 with the Generalized Representation of *n*-Alkane Densities by Assael et al. [94-ass/dym]

<i>n</i> -alkane	T range ^a /K	P _{max} ^a /MPa	RMSD _r /%	bias _r ^b /%	max dev ^b /%
pentane	278-323	170	0.072	0.037	0.202
ĥexane	233-333	300	0.123	0.035	0.336
heptane	198 - 393	205	0.107	0.029	0.389
octane	258 - 393	320	0.122	-0.008	0.312
nonane	303 - 423	160	0.117	0.035	0.437
decane	298 - 348	500	0.103	-0.101	-0.150
undecane	303 - 373	305	0.175	-0.028	0.429
dodecane	298-393	420	0.144	0.011	0.358
tridecane	303 - 373	305	0.082	0.046	0.230
tetradecane	298 - 358	370	0.063	-0.005	0.155
pentadecane ^c	310 - 410	650	0.431	-0.427	-0.554
ĥexadecane	298 - 373	300	0.063	-0.037	-0.109

The temperature and pressure ranges are those of experimental data used for the evaluation of the generalized representation by Assael et al. The density values used in a comparison were generated in 5 K and $P_{\text{max}}/10$ increments. b { ρ_{rel} [Table 2) – ρ_{rel} [94-ass/dym]} 100/ ρ_{rel} [94-ass/dym]. c T, P_{max} ranges from Table 3, since no data for pentadecane were used by Assael et al. [94-ass/dym] for evaluation of the generalized representation.

tioned alkanes prompt us to the regions where new experimental data are highly desirable.

The examination of the shape of the $B(T, \overline{b})$ curves was not performed for 1-alkanols [94-cib/zik]. Additional tests showed that there are no minima nor inflection points for all fits for 1-alkanols from methanol through 1-decanol except for 1-nonanol (inflection points around 345 K and 370 K were found for the fits I and II, respectively, given by Cibulka and Ziková [94-cib/zik]).

Recently, Assael et al. [94-ass/dym] have developed generalized formulas for the parameters *C* and *B* of the Tait equation to calculate the densities of compressed liquid *n*-alkanes. The temperature and pressure ranges of experimental data used to evaluate their generalized representation were rather limited compared to the present correlations; however, the agreement in these ranges is, except for pentadecane, very good, as is illustrated in Table 4 where the values of relative density, $\rho_{rel} = \rho(T,P)/\rho(T,P_{ref})$, are compared to eliminate the effect of the reference line, $\rho(T,P_{ref})$. The deviations { ρ_{rel} (Table 2) $- \rho_{rel}$ [94-ass/dym]}/ ρ_{rel} [94-ass/dym] are either within or close to the experimental error and are mostly negative at lower temperatures and pressures and positive at high pressures. This

indicates an excellent performance of the generalized representation proposed by Assael et al. Experimental densities of pentadecane (the only data available in our database were those by Cutler et al. [58-cut/mcm]; see Tables 1 and 3), which were not used by Assael et al., show large negative deviations. Since the original values for the reference line, $\rho(T, P_{ref})$, were used for the fit (see Table 3), the deviations cannot be caused by an inconsistency of the $\rho(T, P_{ref})$ values with the reference line from Cibulka [93cib]. The values reported for dodecane by the same authors [58-cut/mcm] were rejected (see Table 3) due to large (mostly negative) deviations from most of the other published data. Thus it may be concluded that (i) the densities calculated for pentadecane from the generalized equations given by Assael et al. [94-ass/dym] are likely to be closer to the correct ones than the available experimental values and (ii) the fit given for pentadecane in Table 2 should be regarded as a smoothed representation of probably erroneous data measured by Cutler et al. [58-cut/mcm].

Acknowledgment

A part of this work was done during the stay of I.C. in the laboratory of Prof. I. Nagata, Department of Chemical

Engineering, k other facilities	Kanazawa University, Japan; computer and provided are acknowledged.	70-kus/tas	Kuss, E.; Taslimi, M. p.V.T-Messungen an zwanzig organischen Flussigkeiten (p.V.T Measurement of Twenty Organic Liquids). <i>ChemIngTech.</i> 1970 ,
Literature Ci	ited		<i>42</i> , 1073–1081.
31-bri	Bridgman, P. W. The Volume of Eighteen Liquids as a Function of Pressure and Temperature. <i>Proc.</i> <i>Am. Acad. Arts Sci.</i> 1931 , <i>66</i> , 185–233.	70-sny/win	Snyder, P. S.; Winnick, J. The Pressure, Volume and Temperature Properties of Liquid n-Alkanes at Elevated Pressures. <i>Proc. Symp. Thermophys. Prop.</i> 1970 , No. 5, 115–129.
35-sag/lac	Sage, B. H.; Lacey, W. N.; Schaafsma, J. G. Phase Equilibria in Hydrocarbon Systems. VI. Thermo- dynamic Properties of Normal Pentane. <i>Ind. Eng.</i>	71-ben/win	Benson, M. S.; Winnick, J. PVT Properties of Liquid <i>n</i> -Octane. <i>J. Chem. Eng. Data</i> 1971 , <i>16</i> , 154–157.
37-smi/bea	<i>Chem.</i> 1935 , <i>27</i> , 48–50. Smith, L. B.; Beattie, J. A.; Kay, W. C. The Compressibilities of Liquid and Gaseous Normal Heptane and an Equation of State for Gaseous Normal Heptane <i>L Am Chem Sci</i> 1937 , <i>59</i> , 1587–1589	72-gol/ada	Golik, A. Z.; Adamenko, I. I.; Borovik, V. V. Observation of P-V-T Relation for n-Paraffins in the Interval of Pressure up to 2500 atm and Temperatures up to 120 °C. <i>Ukr. Fiz. Zh. (Ukr. Ed.)</i> 1972 , <i>17</i> , 2075–2078 (in Russian).
40-kel/fel	Kelso, E. A.; Felsing, W. A. The Pressure – Volume– Temperature Relations of <i>n</i> -Hexane and of 2-Meth- vlpentane. <i>J. Am. Chem. Soc.</i> 1940 , <i>62</i> , 3132–3134.	72-lys	Lysne, P. C. Nonlinear U(u) Hugoniots of Liquids at Low Pressures. <i>J. Chem. Phys.</i> 1972 , <i>57</i> , 492–949.
40-sag/lav	Sage, B. H.; Lavender, H. M.; Lacey, W. N. Phase Equilibria in Hydrocarbon Systems. Methane-De- cane System. <i>Ind. Eng. Chem.</i> 1940 , <i>32</i> , 743–747.	74-hou	Houck, J. C. High Pressure Measurements of Den- sity, Velocity of Sound, and Bulk Moduli of Pentane and 2-Methylbutane and their Mixtures. J. Res. Natl Bur Stand Sect 4 1974, 78 617–622
42-fel/wat	Felsing, W. A.; Watson, G. M. The Compressibility of Liquid <i>n</i> -Octane. J. Am. Chem. Soc. 1942 , 64, 1822–1823.	76-ras/gri	Rastorguev, Yu. L.; Grigoriev, B. A.; Kurumov, D. S. Experimental Observation of P-V-T Dependence of n-Hexane in Liquid Phase at High Pressures. <i>Izv.</i>
42-rea/old	Reamer, H. H.; Olds, R. H.; Sage, B. H.; Lacey, W. N. Phase Equilibria in Hydrocarbon Systems. Meth- ane-Decane System. <i>Ind. Eng. Chem.</i> 1942 , <i>34</i> ,	76-ta'	Vyssh. Ucheb. Zaved., Neft Gaz 1976 , <i>19</i> (11), 61– 64 (in Russian). Ta'ani R Experimentelle PVT-Daten Zustands-
42-sag/lac	1526–1531. Sage, B. H.; Lacey, W. N. Phase Equilibria in Hydrocarbon Systems. Thermodynamic Properties of n-Pentane. <i>Ind. Eng. Chem.</i> 1942 , <i>34</i> , 730–737.	,	gleichung und Thermodyna-mische Funktionen des Methanols bis 350 Grad C und 8000 Bar (Experi- mental PVT Data, Equation of State, and Thermo- dynamic Functions of Methanol up to 350° C and 8000 her) Bb Thesis Korjenshe Lipitareit
49-bri	Bridgman, P. W. Further Rough Compressions to 40,000 kg/cm ² , Especially Certain Liquids. <i>Proc. Am. Acad. Arts Sci.</i> 1949 , <i>77</i> , 129–146.	77-aft/zaw	Germany 1976, pp 1–76. Aftienjew, J.; Zawisza, A. High-Pressure Liquid-
51-edu/new	Eduljee, H. E.; Newitt, D. M.; Weale, K. E. Pres- sure-Volume-Temperature Relations in Liquids and Liquid Mixtures. Part I. The Compression of n- Hexane, n-Heptane, n-Octane, and of their Binary		Vapour Equilibria, Critical State, and p(V,T,x) up to 503.15 K and 4.560 MPa for n-Pentane + n- Perfluoropentane. <i>J. Chem. Thermodyn.</i> 1977 , <i>9</i> , 153–165.
53-car/sag	and Ternary Mixtures up to 5000 Atmospheres. J. Chem. Soc. 1951 , 3086–3091. Carmichael, L. T.; Sage, B. H.; Lacey, W. N. Phase	78-gou	Gouel, P. Density of Alkanes (C ₆ to C ₁₆), Cycloal- kanes and Alkylbenzenes. <i>Bull. Cent. Rech. Explor</i> <i>Prod. Elf-Aquitaine</i> 1978 , <i>2</i> , 211–225 (in French).
52 li/con	Equilibria in Hydrocarbon Systems. Volumetric Behavior of n-Nonane. <i>Ind. Eng. Chem.</i> 1953 , <i>45</i> , 2697–2699.	78-gri/lin	Grindley, T.; Lind, J. E., Jr. The Residual Energy and Entropy of Hydrocarbon Liquids and their Relation to the Liquid Structure. <i>J. Chem. Phys.</i> 1978 , <i>68</i> , 5046–5052.
55-ii/cali	Pentane. <i>Chem. Eng. Prog. Symp. Ser.</i> 1953 , <i>49</i> , 147–150.	78-tak	Takagi, T. Ultrasonic Velocity and Density of Liquid n-Alkanes under Pressure. <i>Kagaku Kogaku Ron-</i> hunshu 1978 4 1–5 (in Lananese)
54-ste/sag	Stewart, D. E.; Sage, B. H.; Lacey, W. N. Volumetric Behavior of n-Hexane in the Liquid Phase. <i>Ind.</i> <i>Eng. Chem.</i> 1954 , <i>46</i> , 2529–2531.	79-dic	Dick, R. D. Shock Compression Data for Liquids. I. Six Hydrocarbon Compounds. <i>J. Chem. Phys.</i> 1979 ,
55-nic/rea	Nichols, W. B.; Reamer, H. H.; Sage, B. H. Phase Equilibria in Hydrocarbon Systems. Volumetric Behavior of n-Heptane. <i>Ind. Eng. Chem.</i> 1955 , <i>47</i> , 2219–2221.	79-dym/you	<i>P</i> 1, 3203–3212. Dymond, J. H.; Young, K. J.; Isdale, J. D. p, $ρ$, T Behaviour for n-Hexane + n-Hexadecane in the Range 298 to 373 K and 0.1 to 500 MPa. <i>J. Chem.</i>
57-wal/ric	Walsh, J. M.; Rice, H. M. Dynamic Compression of Liquids from Measurements on Strong Shock Waves. <i>J. Chem. Phys.</i> 1957 , <i>26</i> , 815–823.	79-geh/len	<i>Thermodyn.</i> 1979 , <i>11</i> , 887–895. Gehrig, M.; Lentz, H. Values of p(V,T) for n-Pentane in the Range 5 to 250 MPa and 313 to 643 K. <i>J.</i>
58-cut/mcm	Cutler, W. G.; McMickle, R. H.; Webb, W.; Schiessler, R. W. Study of the Compressions of Several High Molecular Weight Hydrocarbons. <i>J. Chem. Phys.</i> 1958 , <i>29</i> , 727–740.	79-isd/dym	<i>Chem. Thermodyn.</i> 1979 , <i>11</i> , 291–300. Isdale, J. D.; Dymond, J. H.; Brawn, T. A. Viscosity and Density of n-Hexane - Cyclohexane Mixtures between 25 and 100 °C up to 500 MPa. <i>High</i>
60-boe	Boelhouver, J. W. M. PVT Relations of Five Liquid n-Alkanes. <i>Physica (Amsterdam)</i> 1960 , <i>26</i> , 1021– 1028	80-lan/wur	<i>Temp.—High Pressures</i> 1979 , <i>11</i> , 571–580. Landau, R.; Wurflinger, A. PVT-Daten von Aceto-
64-doo	Doolittle, A. K. Specific Volumes of n-Alkanes. J. Chem. Eng. Data 1964 , 9, 275–279.		°C. Druckabhaengigkeit der Umwandlungsvolu- mina, -enthalpien und -entropien (PVT Data of
66-ata	Atanov, Yu. A. Approximate Equation of State of Liquid at High Pressures. <i>Zh. Fiz. Khim.</i> 1966 , <i>40</i> , 1216–1218 (in Russian).		Actionation of the content of the co
67-mop	Mopsik, F. I. Dielectric Constant of n-Hexane as a Function of Temperature, Pressure and Density. <i>J. Res. Natl. Bur. Stand., Sect. A</i> 1967 , <i>71</i> , 287–292.	80-oza/ooy	Ozawa, S.; Ooyatsu, N.; Yamabe, M.; Honmo, S.; Ogino, Y. Specific Volumes of Binary Liquid Mix- tures at High Pressures. 1. Experimental Results
69-bra/fre	Brazier, D. W.; Freeman, G. R. The Effect of Pressure on the Density, Dielectric Constant, and Viscosity of Several Hydrocarbons and other Or- ganic Liquids. <i>Can. J. Chem.</i> 1969 , <i>47</i> , 893–899.	80 sec/lyc	for (Ethanol + Methylcyclopentane), (n-Heptane + Ethanol), and (Methylcyclopentane + n-Heptane). J. Chem. Thermodyn. 1980 , <i>12</i> , 229–242.
70-erm/skr	Ermakov, G. V.; Skripov, V. P. Equation of State and Boundary of Metastable Liquid. <i>Teplofiz. Vys.</i> <i>Temp.</i> 1970 , <i>8</i> , 976–982 (in Russian).	ou-sca/1y0	tivity and pvT Data for Some n-Alkanes. <i>Proc. R. Soc. London, A</i> 1980 , <i>370</i> , 193–211. (Data were taken from the deposited material.)

82-bac/eas	Back, P. J.; Easteal, A. J.; Hurle, K. L.; Woolf, L. A. High-Precision Measurements with a Bellows Volumometer. <i>J. Phys. E: Sci. Instrum.</i> 1982 , <i>15</i> , 360.		Equation of State of n-Pentane in Critical Region. <i>Teplofiz. Vys. Temp.</i> 1986 , <i>24</i> , 1096–1099 (in Russian).
82-dym/rob	Dymond, J. H.; Robertson, J.; Isdale, J. D. (p,ρ,T) of Some Pure n-Alkanes and Binary Mixtures of n-Alkanes in the Range 298 to 373 K and 0.1 to 500 MPa. <i>J. Chem. Thermodyn.</i> 1982 , <i>14</i> , 51–59.	86-hol/goe	Holzapfel, K.; Goetze, G.; Kohler, F. Volume and Isothermal Compressibility of Some Normal Al- kanes $(C_5-C_{16})+2,2,4$ -Trimethylpentane,+Cyclo- alkanes (C_5,C_6,C_8) , or Methylcyclohexane. <i>Int. Data</i> <i>Ser., Sel. Data Mixtures, Ser. A</i> 1986 , No. 1, 38–
82-kob/nis	Kobayashi, H.; Nishikido, N.; Kaneshima, S.; Tana- ka, M. An Apparatus for Easy Measuring the Compressibilities of Liquids and Solutions using a Differential Transformer. <i>Nippon Kagaku Kaishi</i> 1982 , 1835–1837 (in Japanese).	87-eas/woo	Easteal, A. J.; Woolf, L. A. Volume Ratios for n-Pentane in the Temperature Range 278–338 K and at Pressures up to 280 MPa. <i>Int. J. Thermo-</i> <i>phys.</i> 1987 , <i>8</i> , 231–238.
82-kur/gri	Kurumov, D. S.; Grigor'ev, B. A. Experimental Investigation of p.v.T - Dependence of n-Hexane in the Critical Region. <i>Zh. Fiz. Khim.</i> 1982 , <i>56</i> , 551– 555 (in Russian).	87-hol/goe	Holzapfel, K.; Goetze, G.; Kohler, F. Volume and Isothermal Compressibility of Oxolane + Some Normal Alkanes ($C_5 - C_{16}$). <i>Int. Data Ser., Sel. Data</i> <i>Mixtures, Ser. A</i> 1987 , No. 4, 263–268.
82-zaw/vej	Zawisza, A.; Vejrosta, J. High-Pressure Liquid- Vapour Equilibrium, Critical State, and P(V,T,x) up to 573.15 K and 5.066 MPa for (Heptane + Propan- 1-ol). <i>J. Chem. Thermodyn.</i> 1982 , <i>14</i> , 239–249.	87-hol/goe-1	Holzapfel, K.; Goetze, G.; Demiriz, A. M.; Kohler, F. Volume and Isothermal Compressibility of Some Normal Alkanes (C ₅ -C ₁₆)+ 2,3-Dimethylbutane, + Methylcyclopentane, + Butylcyclohexane, + Ben- zene + 2-Propage or + Tetrachloremethane. Int
83-geh/len	Gehrig, M.; Lentz, H. Values of $p(V_m,T)$ for n-Decane up to 300 MPa and 673 K. J. Chem. Thermodyn. 1983 , 15, 1159–1167.		Data Ser., Sel. Data Mixtures, Ser. A 1987 , No. 1, 30–56.
83-kur/gri	Kurumov, D. S.; Grigoriev, B. A. Experimental Observation of Thermal Properties of n-Hexane at High Temperatures and Pressures. <i>Izv. Vyssh.</i> <i>Ucheb. Zaved., Neft Gaz</i> 1983 , <i>26</i> (5), 35–39 (in Russian).	87-led	Lederer, T. Molvolumina von reinen flussigen Stof- fen und der binaren Mischung Butan-1-ol/n-Hexan bei hohem Druck und verschiedenen Temperaturen (Molar Volumes of Pure Substances and their Binary Mixtures Butan-1-ol/n-Hexane at High Pres- sure and Various Temperatures). Thesis, Heidel- berg University, Comport, 1097, pp. 1–04.
83-rou/ric	Rousseaux, P.; Richon, D.; Renon, H. Volumetric Properties of n-Dodecane up to 423.1 K and 30.58 MPa. <i>Fluid Phase Equilib.</i> 1983 , <i>11</i> , 169–177.	87-mat/rod	Matthews, M. A.; Rodden, J. B.; Akgerman, A. High-Temperature Diffusion, Viscosity, and Density
84-cul/mat	Cullick, A. S.; Mathis, M. L. Densities and Viscosi- ties of Mixtures of Carbon Dioxide and <i>n</i> -Decane from 310 to 403 K and 7 to 30 MPa. <i>J. Chem. Eng.</i>	88-dym/mal	Measurements in n-Hexadecane. J. Chem. Eng. Data 1987 , 32, 317–319. Dymond, J. H.; Malhotra, R.; Isdale, J. D.; Glen, N.
84-vas	Data 1984 , 29, 393–396. Vasil'ev, Yu. L. Observation of Density of Normal Pentane in Liquid Phase. <i>Izv. Vyssh. Ucheb. Zaved.,</i> <i>Neft Gaz</i> 1984 , 27 (10), 57–58 (in Russian).		F. (p,ρ,T) of n-Heptane, Toluene, and Oct-1-ene in the Range 298 to 373 K and 0.1 to 400 MPa and Representation by the Tait Equation. <i>J. Chem.</i> <i>Thermodyn.</i> 1988 , <i>20</i> , 603–614.
85-eas/woo	Easteal, A. J.; Woolf, L. A. p,V,T and Derived Thermodynamic Data for Toluene, Trichloromethane, Dichloromethane, Acetonitrile, Aniline, and n-Dode-	88-mor/aon	Moriyoshi, T.; Aono, T. Compressions of C ₆ Hydro- carbons from 298.15 to 313.15 K at Pressures to 145 MPa. <i>J. Chem. Thermodyn.</i> 1988 , <i>20</i> , 185–191.
85-gla/pet	cane. Int. J. Thermophys. 1985 , 6, 331–351. Glaser, M.; Peters, C. J.; Van der Kooi, H. J.; Liebtenthalen, P. N. Phase Feuilibric of (Methane	89-amb/wal	Ambrose, D.; Walton, J. Vapor Pressures up to their Critical Temperature of Normal Alkanes and 1-Al- kanols. <i>Pure Appl. Chem.</i> 1989 , <i>61</i> , 1395–1403.
	+ n-Hexadecane) and (p,V_m,T) of n-Hexadecane. J. Chem. Thermodyn. 1985 , 17, 803–815.	89-bet/pal	Bett, K. E.; Palavra, A. M. F.; Retsina, T.; Richard- son, S. M.; Wakeham, W. A. A Vibrating-Rod Deprimetor Int J. Thermophys. 1090 , 10, 971–898
85-kra/mue	Kratzke, H.; Mueller, S.; Bohn, M.; Kohlen, R. Thermodynamic Properties of Saturated and Com- pressed Liquid n-Pentane. <i>J. Chem. Thermodyn.</i> 1985 , <i>17</i> , 283–294.	89-tos/fig	Toscani, S.; Figuiere, P.; Szwarc, H. A Magnetic- Suspension Apparatus to Measure Densities of Liquids as a Function of Temperature at Pressures
85-mak	Makita, T. Private communication, 1985. (Data were obtained from J. H. Dymond, University of Glasgow, U.K.)	90-won/hay	up to 100 MPa. Application to n-Heptane. <i>J. Chem.</i> <i>Thermodyn.</i> 1989 , <i>21</i> , 1263–1277. Wong CF. Hayduk W. Molecular Diffusivities for
85-mur/tra	Muringer, M. J. P.; Trappeniers, N. J.; Biswas, S. N. The Effect of Pressure on the Sound Velocity and Density of Toluene and n-Heptane up to 2600 bar.		Propene in 1-Butanol, Chlorobenzene, Ethylene Glycol, and <i>n</i> -Octane at Elevated Pressures. <i>J. Chem. Eng. Data</i> 1990 , <i>35</i> , 323–328.
85-tak/ter	<i>Phys. Chem. Liq.</i> 1985 , <i>14</i> , 273–296. Takagi, T.; Teranishi, H. Ultrasonic Speeds and Thermodynamics for Binary Solutions of n-Alkanes under High Pressures. <i>Fluid Phase Equilib.</i> 1985 , <i>20</i> , 315–320.	91-ban/gar	Banipal, T. S.; Garg, S. K.; Ahluwalia, J. C. Heat Capacities and Densities of Liquid n-Octane, n- Nonane, n-Decane, and n-Hexadecane at Temper- atures from 318.15 K to 373.15 K and at Pressures up to 10 MPa. <i>J. Chem. Thermodyn.</i> 1991 , <i>23</i> , 923– 031
85-tek/cib	Tekáč, V.; Cibulka, I.; Holub, R. PVT Properties of Liquids and Liquid Mixtures: A Review of the Experimental Methods and the Literature Data. <i>Fluid Phase Equilib.</i> 1985 , <i>19</i> , 33–149.	91-dix/far	 Dix, M.; Fareleira, J. M. N. A.; Takaishi, Y.; Wakeham, W. A. A Vibrating-Wire Densimeter for Measurements in Fluids at High Pressures. Int. J. Thermonbys 1991 12 357-370
85-vas	Vasil'ev, Yu. L. Observation of Density of n-Heptane in Liquid Phase. <i>Izv. Vyssh. Ucheb. Zaved., Neft Gaz</i> 1985 , <i>28</i> (5), 49–51 (in Russian).	91-kan/lag	Kanti, M.; Lagourette, B.; Alliez, J.; Boned, C. Viscosity of Binary Heptane-Nonylbenzene as a Eurotion of Pressure and Temperature: Application
85-zaw	Zawisza, A. High-Pressure Liquid-Vapour Equilibria, Critical State, and $p(V_m,T,x)$ to 448.15 K and 4.053 MPa for { $xC_6H_{14} + (1\cdot x)CH_3OH$ }. J. Chem.	91-mal/woo	of Flory's Theory. <i>Fluid Phase Equilib.</i> 1991 , <i>65</i> , 291–304. Malhotra, R.: Woolf, L. A. Volume Ratios {V(n)/
86-gat/woo	Thermodyn. 1985 , <i>17</i> , 941–947. Gates, J. A.; Wood, R. H.; Cobos, J. C.; Casanova, C.; Roux, A. H.; Grolier, JP. E.; Roux-Desgranges, G. Densities and Heat Capacities of 1-Butanol + n-Decane from 298 K to 400 K. <i>Fluid Phase Equilib.</i> 1986 , <i>27</i> , 137–151.		V(0.1MPa)} for n-Heptane at Temperatures from 278 K to 338 K for Pressures up to 400 MPa. J. Chem. Thermodyn. 1991 , 23, 49–57.
		91-mel/mel	Melikhov, Yu. F.; Mel'nikov, G. A.; Tutov, V. M.; Verveiko, V. N. Acoustic and Thermophysical Prop- erties of Some Derivatives of Hexane at High
86-gri/kur	Grigor'ev, B. A.; Kurumov, D. S.; Abdulagatov, I. M.; Vasil'ev, Yu. L. Observation of Density and		Parameters of State. Izv. Vyssh. Ucheb. Zaved., Energ. 1991, 34 (11), 73–78 (in Russian).

668 Journal of Chemical and Engineering Data, Vol. 41, No. 4, 1996

91-orm/dak	Ormanoudis, C.; Dakos, C.; Panayiotou, C. Volu- metric Properties of Binary Mixtures. 2. Mixtures of <i>n</i> -Hexane with Ethanol and 1-Propanol. <i>J. Chem.</i> <i>Eng. Data</i> 1991 , <i>36</i> , 39–42.	94-ass/dym	Phase Equilib. 1993 , <i>89</i> , 1–18. Assael, M. J.; Dymond, J. H.; Exadaktilou, D. An Improved Representation for n-Alkane Liquid Den- sities. <i>Int. J. Thermophys.</i> 1994 , <i>15</i> , 155–164.	
91-pap/zia	Papaioannou, D.; Ziakas, D.; Panayiotou, C. Volu- metric Properties of Binary Mixtures. 1. 2-Pro- panone + 2,2,4-Trimethylpentane and <i>n</i> -Heptane + Ethanol Mixtures. <i>J. Chem. Eng. Data</i> 1991 , <i>36</i> , 35–39.	94-cib/zik	Cibulka, I.; Ziková, M. Liquid Densities at Elevated Pressure of 1-Alkanols from C ₁ to C ₁₀ : A Critical Evaluation of Experimental Data. <i>J. Chem. Eng.</i> <i>Data</i> 1994 , <i>39</i> , 876–886.	
91-tan/hos	Tanaka, Y.; Hosokawa, H.; Makita, T. Viscosity and Density of Binary Mixtures of Cyclohexane with n-Octane n-Dodecane and n-Hexadecane under	94-dym	Dymond, J. H. Vapour-Liquid Equilibria in Alkan- 1-ol + n-Alkane Mixtures. <i>Pure Appl. Chem.</i> 1994 , <i>66</i> , 553–564.	
	High Pressures. Int. J. Thermophys. 1991 , 12, 245–264.	95-sau/hol Sauermann, P.; Holzapfel, K.; Oprzynski, J.; Kohler, F.; Poot, W.; de Loos, T. W. The $p_{,\rho}$, T. Properties of		
92-kir/len	Kiran, E.; Len, J. L. High-Pressure Viscosity and Density of <i>n</i> -Alkanes. <i>Int. J. Thermophys.</i> 1992 , <i>13</i> , 411–442.		Ethanol + Hexane. <i>Fluid Phase Equilib.</i> 1995 , <i>112</i> , 249–272.	
92-sus/bud	Susnar, S. S.; Budziak, C. J.; Hamza, H. A.; Neu- mann, A. V. Pressure Dependence of the Density of n-Alkanes. <i>Int. J. Thermophys.</i> 1992 , <i>13</i> , 443–	Received for review February 12, 1996. Accepted April 28, 1996. Support from the Grant Agency of the Czech Republic within the Grant No. 203/94/0312 is acknowledged.		
	452.	JE960058M		
93-cib	Cibulka, I. Saturated Liquid Densities of 1-Alkanols from C_1 to C_{10} and n-Alkanes from C_5 to C_{16} : A Critical Evaluation of Experimental Data. <i>Fluid</i>	[®] Abstract publi	shed in Advance ACS Abstracts, June 1, 1996.	